REMARK ON A THEOREM OF
AHARONOV AND WALSH

BY

P. SzUSz

ABSTRACT

The following theorem is proved: there is a function f(z) analytic in I zl <1
and having the natural boundary I zl = 1 such that for an infinite sequence of
rational functions of degree a, r, (z) = p, (2)/q, (2), the inequality

* [f@ —rm@]| < e

holds in the closed unit circle ]zl X 1. Here ¢y, €32,..., &5 is any sequence of
positive numbers, tending to zero as n approaches infinity. This theorem is a
refinement of a theorem of Aharonov and Walsh, who showed the existence
of an f(z) satisfying (*)in I z| £ 1 (with an infinite sequence {r,. (z)}) but
having the natural boundary zl =3.

Let f(z) = ap+ a;z + --- be a function regular for |z| < 1; further, put
S (z) =ap+a,z+ - +a,z". It is a consequence of the Cauchy-Hadamard
formula that if

) lim max|f(z) — S(2)|'" =0

n—=ow z6 D

in any domain D contained in the circle | z| < 1, then f(2) is an entire function.

In a recent paper [1], D. Aharonov and J. L. Walsh considered the question
whether the analogous statement holds if the powers 1, z, z2, -+ are replaced by
more general functions regular for [zl < 1. They solved this question in the
negative sense for

@ o) = T

n=1 27 Z,
where lz,, | > 1. (If the 4,’s tend to zero rapidly enough, then g(z) defined by (2) is
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analytic in ]zl < 1.) Among several similar examples they give an example for
which g(z) defined by (2) has the natural boundary |z l = 3 and still

n
3) lim lg(z) S

n—w k=1 2~ Z

1/n

=0

uniformly in Iz[ <1
Actually their construction gives, instead of (3), the stronger statement

39 max ig(z) - X A

EES? k=1 Z— %

<&,

where ¢,, &,, - is an arbitrary sequence of positive numbers; on the other hand,
it seems to be essential that (3’) holds for lz! =1 and the natural boundary of
g(2)is | z| = 3, or by a slight modification of the construction, any circle | z| = p
with p > 1.

In the present short note I give an example of a function g(z) ,for which (3')
holds and | z| = 1 is the natural boundary of g(z).

Construction of the g(z)

Let €, €,,--- be any sequence of positive numbers; J,,8,,--- a sequence of
positive numbers satisfying
4 2 8, =,
k=n+1
Put z, = (1 + 1/k) exp(2mil[2¥) (k = 1,2,---; 1 = 0,1,---,2¥ — 1); and
© 5}( 2k—1 1

(5) g(2) = kE 2z

: .
-1 k2 5 zy—z

I show that this g(z) satisfies all our requirements. By (4), (5) and by the fact that
for lzl £1 ‘zk, -~ z| = 1/k holds, we have (3').
It remains only to show that g(z) has the natural boundary zl = 1. Obviously
n 5 2k—1 1
T A X

k
k=1 k2¥ Do zy—z

= g.(2)

is regular for lz] < 1. Since for any fixed { of the form { = exp2ril /2",

969 8ll) _ g0 g,

for any natural n and integer I (0 < I < 27), it suffices to show that g(z), defined by
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(5) cannot be continued beyond z = 1. Develop g(z) into a power-series around
the point 4. Simple computation gives g(z) = X,2,%.(z — $)" where

) -3 L N1
k=1 2%k =0 (z“-—i)”“
One has
2t 1 S im+l+my 1 T3 iiom
A A ) 3= T
_ % (n+1+m) 1 1\
2k|,,: m ] am-k (1 +1/k)m

By (7) all €,’s are positive. On the other hand, for n = 2*-!— 1 we have by (6)

and (7)
L
n 2" \n/ (1+1/k)*

or, by Stirling’s formula,

1
8 €, > C —_—
®) (1 + 1/logn)*"’
C being a numerical constant. (8) yields

lm [Gperoy [V 770 = 2,

ko

hence z = 1 is a singular point of g(z).
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